Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 2.993
Filtrar
1.
Microb Cell Fact ; 23(1): 93, 2024 Mar 27.
Artigo em Inglês | MEDLINE | ID: mdl-38539193

RESUMO

Fungal non-ribosomal peptide synthetase (NRPS)-encoding products play a paramount role in new drug discovery. Fusarium, one of the most common filamentous fungi, is well-known for its biosynthetic potential of NRPS-type compounds with diverse structural motifs and various biological properties. With the continuous improvement and extensive application of bioinformatic tools (e.g., anti-SMASH, NCBI, UniProt), more and more biosynthetic gene clusters (BGCs) of secondary metabolites (SMs) have been identified in Fusarium strains. However, the biosynthetic logics of these SMs have not yet been well investigated till now. With the aim to increase our knowledge of the biosynthetic logics of NPRS-encoding products in Fusarium, this review firstly provides an overview of research advances in elucidating their biosynthetic pathways.


Assuntos
Fusarium , Fusarium/genética , Fusarium/metabolismo , Fungos/metabolismo , Peptídeo Sintases/genética , Peptídeo Sintases/metabolismo , Biologia Computacional , Família Multigênica , Vias Biossintéticas/genética
2.
Sci Rep ; 14(1): 5865, 2024 03 11.
Artigo em Inglês | MEDLINE | ID: mdl-38467671

RESUMO

The present study assessed the ability of Trichoderma to combat F. sporotrichioides, focusing on their antagonistic properties. Tests showed that Trichoderma effectively inhibited F. sporotrichioides mycelial growth, particularly with T. atroviride strains. In co-cultures on rice grains, Trichoderma almost completely reduced the biosynthesis of T-2 and HT-2 toxins by Fusarium. T-2 toxin-α-glucoside (T-2-3α-G), HT-2 toxin-α-glucoside (HT-2-3α-G), and HT-2 toxin-ß-glucoside (HT-2-3ß-G) were observed in the common culture medium, while these substances were not present in the control medium. The study also revealed unique metabolites and varying metabolomic profiles in joint cultures of Trichoderma and Fusarium, suggesting complex interactions. This research offers insights into the processes of biocontrol by Trichoderma, highlighting its potential as a sustainable solution for managing cereal plant pathogens and ensuring food safety.


Assuntos
Fusarium , Toxina T-2 , Toxina T-2/análogos & derivados , Trichoderma , Toxina T-2/metabolismo , Fusarium/metabolismo , Trichoderma/metabolismo , Glicosilação , Grão Comestível/metabolismo , Glucosídeos/metabolismo
3.
J Agric Food Chem ; 72(11): 6028-6039, 2024 Mar 20.
Artigo em Inglês | MEDLINE | ID: mdl-38457781

RESUMO

The fungal cell wall, primarily comprising a glucan-chitin matrix and cell wall proteins (CWPs), serves as a key mediator for fungal interactions with the environment and plays a pivotal role in virulence. In this study, we employed a comprehensive proteomics approach to analyze the CWPs in the plant pathogenic fungus Fusarium graminearum. Our methodology successfully extracted and identified 1373 CWPs, highlighting their complex linkages, including noncovalent bonds, disulfide bridges, alkali-sensitive linkages, and glycosylphosphatidylinositol (GPI) anchors. A significant subset of these proteins, enriched in Gene Ontology terms, suggest multifunctional roles of CWPs. Through the integration of transcriptomic and proteomic data, we observed differential expression patterns of CWPs across developmental stages. Specifically, we focused on two genes, Fca7 and Cpd1, which were upregulated in planta, and confirmed their localization predominantly outside the plasma membrane, primarily in the cell wall and periplasmic space. The disruption of FCA7 reduced virulence on wheat, aligning with previous findings and underscoring its significance. Overall, our findings offer a comprehensive proteomic profile of CWPs in F. graminearum, laying the groundwork for a deeper understanding of their roles in the development and interactions with host plants.


Assuntos
Proteínas Fúngicas , Fusarium , Proteínas Fúngicas/metabolismo , Proteômica , Parede Celular/química , Fusarium/genética , Fusarium/metabolismo , Doenças das Plantas
4.
Ecotoxicol Environ Saf ; 274: 116227, 2024 Apr 01.
Artigo em Inglês | MEDLINE | ID: mdl-38493703

RESUMO

In current study, Fusarium mycotoxin, beauvericin (BEA), has endocrine disrupting potential through suppressing the exogenous androgen receptor (AR)-mediated transcriptional activation. BEA was classified as an AR antagonist, with IC30 and IC50 values indicating that it suppressed AR dimerization in the cytosol. BEA suppress the translocation of cytosolic activated ARs to the nucleus via exogenous androgens. Furthermore, we investigated the impact of environmental conditions for BEA production on rice cereal using response surface methodology. The environmental factors affecting the production of BEA, namely temperature, initial moisture content, and growth time were optimized at 20.28 °C, 42.79 % (w/w), and 17.31 days, respectively. To the best of our knowledge, this is the first report showing that BEA has endocrine disrupting potential through suppressing translocation of cytosolic ARs to nucleus, and temperature, initial moisture content, and growth time are important influencing environmental factors for its biosynthesis in Fusarium strains on cereal.


Assuntos
Depsipeptídeos , Fusarium , Micotoxinas , Oryza , Receptores Androgênicos , Humanos , Depsipeptídeos/toxicidade , Grão Comestível/química , Fusarium/metabolismo , Micotoxinas/toxicidade , Oryza/química , Receptores Androgênicos/efeitos dos fármacos , Receptores Androgênicos/metabolismo , Disruptores Endócrinos/química , Disruptores Endócrinos/toxicidade
5.
J Steroid Biochem Mol Biol ; 239: 106483, 2024 May.
Artigo em Inglês | MEDLINE | ID: mdl-38369033

RESUMO

Beauvericin (BEA) is a cyclic depsipeptide secondary metabolite of Fusarium species. It causes chemical hazards in food products and exists in an environment containing soil and various food types. On the other hand, the purified BEA has various biological activities and is regarded as a potential candidate for pharmaceutical research. This study was performed to assess the anti-proliferation activity of BEA against human breast cancer cells by regulating the estrogen receptor-alpha (ERα)/p38 pathway. TA and BA assays verified that BEA is a completed ER antagonist. Additionally, BEA suppressed cell proliferation in the anti-proliferation assay involving ER-positive human breast cancer cells co-treated with BPA and BEA. In respect to an anti-proliferation activity, the BPA-induced phosphorylation of p38 protein was inhibited in the presence of BEA. These results suggested that BEA exerts inhibitory potentials on endocrine disrupting effect and possibly acts as a natural therapeutic material for human estrogen hormonal health.


Assuntos
Compostos Benzidrílicos , Neoplasias da Mama , Depsipeptídeos , Fusarium , Fenóis , Humanos , Feminino , Receptor alfa de Estrogênio/metabolismo , Fusarium/metabolismo , Neoplasias da Mama/tratamento farmacológico , Depsipeptídeos/farmacologia , Depsipeptídeos/metabolismo , Proliferação de Células , Linhagem Celular , Linhagem Celular Tumoral
6.
J Agric Food Chem ; 72(6): 3200-3209, 2024 Feb 14.
Artigo em Inglês | MEDLINE | ID: mdl-38315448

RESUMO

Deoxynivalenol (DON) is a phytotoxic agent supporting the spread of fungal diseases in cereals worldwide, i.e., fusarium head blight. It is known that DON accumulation may elicit changes in plant secondary metabolites in response to pathogen attack. This study maps the changes in selected secondary metabolite classes upon DON contamination occurring in fifteen Triticum spp. genotypes, among them emmer, spelt, and soft wheat, and 2 tritordeum varieties, cultivated in two different sites and over two harvest years. The main phenolic classes (i.e., alkylresorcinols, soluble, and cell-wall bound phenolic acids) were targeted analyzed, while changes in the lipidome signature were collected through untargeted HRMS experiments. The results, obtained across multiple Triticum species and in open fields, confirmed the modulation of first-line biological pathways already described in previous studies involving single cereal species or a limited germplasm, thus reinforcing the involvement of nonspecific chemical defenses in the plant response to pathogen attack.


Assuntos
Fusarium , Micotoxinas , Tricotecenos , Grão Comestível/química , Micotoxinas/metabolismo , Tricotecenos/metabolismo , Estações do Ano , Fusarium/metabolismo , Doenças das Plantas/microbiologia
7.
Nat Commun ; 15(1): 1216, 2024 Feb 09.
Artigo em Inglês | MEDLINE | ID: mdl-38332031

RESUMO

Deoxynivalenol (DON) is the most frequently detected mycotoxin in cereal grains and processed food or feed. Two transcription factors, Tri6 and Tri10, are essential for DON biosynthesis in Fusarium graminearum. In this study we conduct stranded RNA-seq analysis with tri6 and tri10 mutants and show that Tri10 acts as a master regulator controlling the expression of sense and antisense transcripts of TRI6 and over 450 genes with diverse functions. TRI6 is more specific for regulating TRI genes although it negatively regulates TRI10. Two other TRI genes, including TRI5 that encodes a key enzyme for DON biosynthesis, also have antisense transcripts. Both Tri6 and Tri10 are essential for TRI5 expression and for suppression of antisense-TRI5. Furthermore, we identify a long non-coding RNA (named RNA5P) that is transcribed from the TRI5 promoter region and is also regulated by Tri6 and Tri10. Deletion of RNA5P by replacing the promoter region of TRI5 with that of TRI12 increases TRI5 expression and DON biosynthesis, indicating that RNA5P suppresses TRI5 expression. However, ectopic constitutive overexpression of RNA5P has no effect on DON biosynthesis and TRI5 expression. Nevertheless, elevated expression of RNA5P in situ reduces TRI5 expression and DON production. Our results indicate that TRI10 and TRI6 regulate each other's expression, and both are important for suppressing the expression of RNA5P, a long non-coding RNA with cis-acting inhibitory effects on TRI5 expression and DON biosynthesis in F. graminearum.


Assuntos
Fusarium , RNA Longo não Codificante , Tricotecenos , RNA Longo não Codificante/genética , RNA Longo não Codificante/metabolismo , Tricotecenos/metabolismo , Fatores de Transcrição/metabolismo , Fusarium/genética , Fusarium/metabolismo , Proteínas Fúngicas/metabolismo , Regulação Fúngica da Expressão Gênica
8.
J Agric Food Chem ; 72(8): 3913-3925, 2024 Feb 28.
Artigo em Inglês | MEDLINE | ID: mdl-38355300

RESUMO

Nucleoside diphosphate kinase (NDK) plays an important role in many cellular processes in all organisms. In this study, we functionally characterized a nucleoside diphosphate kinase (FgNdk1) in Fusarium graminearum, a causal agent of Fusarium head blight (FHB). FgNdk1 was involved in the generation of energy in the electron-transfer chain by interacting with succinate dehydrogenase (FgSdhA, FgSdhC1, and FgSdhC2). Deletion of FgNdk1 not only resulted in abnormal mitochondrial morphology, decreased ATP content, defective fungal development, and impairment in the formation of the toxisome but also led to the suppressed expression level of DON biosynthesis enzymes, decreased DON biosynthesis, and declined pathogenicity as well. Furthermore, deletion of FgNdk1 caused increasing transcriptional levels of FgSdhC1 and FgdhC2, in the presence of pydiflumetofen, related to the decreased sensitivity to SDHI fungicides. Overall, this study identified a new regulatory mechanism of FgNdk1 in the pathogenicity and SDHI fungicide sensitivity of Fusarium graminearum.


Assuntos
Fungicidas Industriais , Fusarium , Núcleosídeo-Difosfato Quinase , Succinato Desidrogenase/genética , Succinato Desidrogenase/metabolismo , Fusarium/genética , Fusarium/metabolismo , Fungicidas Industriais/farmacologia , Fungicidas Industriais/metabolismo , Virulência , Doenças das Plantas/microbiologia , Mitocôndrias/metabolismo , Núcleosídeo-Difosfato Quinase/metabolismo
9.
Toxins (Basel) ; 16(2)2024 01 25.
Artigo em Inglês | MEDLINE | ID: mdl-38393142

RESUMO

Deoxynivalenol (DON), a trichothecene mycotoxin, could lead to cytotoxicity in both animal bodies and plant seed cells. Ozone degradation technology has been applied to DON control. However, the safety and quality of the contaminated grain after DON degradation are largely obscured. In this work, we evaluated the cytotoxicity of ozone-treated DON through seed germination experiments and cytotoxicity tests. Cell experiments showed that the inhibition rate of HepG2 viability gradually increased within the concentrations of 1-10 mg/L of DON, alongside which an IC50 (half maximal inhibitory concentration) of 9.1 mg/L was determined. In contrast, degrading DON had no significant inhibitory effect on cell growth. Moreover, a 1-10 mg/L concentration of DON increased production of a large amount of reactive oxygen radicals in HepG2, with obvious fluorescence color development. However, fluorescence intensity decreased after DON degradation. Further, DON at a concentration of >1 mg/L significantly inhibited the germination of mung bean seeds, whereas no significant inhibition of their germination or growth were observed if DON degraded. Changes in total protein content, fatty acid value, and starch content were insignificant in wheat samples suffering ozone degradation, compared to the untreated group. Lastly, the ozone-treated wheat samples exhibited higher tenacity and whiteness. Together, our study indicated that the toxicity of DON-contaminated wheat was significantly reduced after ozone degradation.


Assuntos
Fusarium , Micotoxinas , Ozônio , Tricotecenos , Animais , Ozônio/toxicidade , Triticum , Micotoxinas/toxicidade , Ácidos Graxos/metabolismo , Contaminação de Alimentos/análise , Fusarium/metabolismo
10.
Toxins (Basel) ; 16(2)2024 02 06.
Artigo em Inglês | MEDLINE | ID: mdl-38393168

RESUMO

Fusarium fungi produce a diverse array of mycotoxic metabolites during the pathogenesis of cereals. Some, such as the trichothecenes and fumonisins, are phytotoxic, acting as non-proteinaceous effectors that facilitate disease development in cereals. Over the last few decades, we have gained some depth of understanding as to how trichothecenes and fumonisins interact with plant cells and how plants deploy mycotoxin detoxification and resistance strategies to defend themselves against the producer fungi. The cereal-mycotoxin interaction is part of a co-evolutionary dance between Fusarium and cereals, as evidenced by a trichothecene-responsive, taxonomically restricted, cereal gene competing with a fungal effector protein and enhancing tolerance to the trichothecene and resistance to DON-producing F. graminearum. But the binary fungal-plant interaction is part of a bigger ecosystem wherein other microbes and insects have been shown to interact with fungal mycotoxins, directly or indirectly through host plants. We are only beginning to unravel the extent to which trichothecenes, fumonisins and other mycotoxins play a role in fungal-ecosystem interactions. We now have tools to determine how, when and where mycotoxins impact and are impacted by the microbiome and microfauna. As more mycotoxins are described, research into their individual and synergistic toxicity and their interactions with the crop ecosystem will give insights into how we can holistically breed for and cultivate healthy crops.


Assuntos
Fumonisinas , Fusarium , Micotoxinas , Tricotecenos , Fumonisinas/metabolismo , Grão Comestível/microbiologia , Fusarium/genética , Fusarium/metabolismo , Ecossistema , Melhoramento Vegetal , Tricotecenos/toxicidade , Tricotecenos/metabolismo , Micotoxinas/toxicidade , Proteínas Fúngicas/genética , Doenças das Plantas/microbiologia
11.
Toxins (Basel) ; 16(2)2024 02 10.
Artigo em Inglês | MEDLINE | ID: mdl-38393177

RESUMO

Fusarium is a genus that mostly consists of plant pathogenic fungi which are able to produce a broad range of toxic secondary metabolites. In this study, we focus on a type A trichothecene-producing isolate (15-39) of Fusarium sporotrichioides from Lower Austria. We assessed the secondary metabolite profile and optimized the toxin production conditions on autoclaved rice and found that in addition to large amounts of T-2 and HT-2 toxins, this strain was able to produce HT-2-glucoside. The optimal conditions for the production of T-2 toxin, HT-2 toxin, and HT-2-glucoside on autoclaved rice were incubation at 12 °C under constant light for four weeks, darkness at 30 °C for two weeks, and constant light for three weeks at 20 °C, respectively. The HT-2-glucoside was purified, and the structure elucidation by NMR revealed a mixture of two alpha-glucosides, presumably HT-2-3-O-alpha-glucoside and HT-2-4-O-alpha-glucoside. The efforts to separate the two compounds by HPLC were unsuccessful. No hydrolysis was observed with two the alpha-glucosidases or with human salivary amylase and Saccharomyces cerevisiae maltase. We propose that the two HT-2-alpha-glucosides are not formed by a glucosyltransferase as they are in plants, but by a trans-glycosylating alpha-glucosidase expressed by the fungus on the starch-containing rice medium.


Assuntos
Fusarium , Micotoxinas , Oryza , Toxina T-2/análogos & derivados , Humanos , Glucosídeos/metabolismo , Fusarium/metabolismo , Oryza/metabolismo , Micotoxinas/metabolismo
12.
Int J Food Microbiol ; 413: 110578, 2024 Mar 02.
Artigo em Inglês | MEDLINE | ID: mdl-38246024

RESUMO

The increase of deoxynivalenol (DON) caused by Fusarium graminearum (F. graminearum) during the malting process is a serious safety problem. In our work, the inhibition mechanism of F. graminearum growth by g-C3N4 homojunction and its application in barley malting were studied. The reason why the growth activity of F. graminearum decreased after photocatalysis by g-C3N4 homojunction was that under visible light irradiation, a large amount of •O2- elicited by g-C3N4 homojunction destroyed the cell structure of F. graminearum, leading to the deficiency of cell membrane selective permeability and serious disorder of intracellular metabolism. The application of photocatalysis technology in malting can effectively inhibit the growth of F. graminearum and the accumulation of ergosterol was reduced by 30.55 %, thus reducing the DON content in finished malt by 31.82 %. Meanwhile, the physicochemical indexes of barley malt after photocatalytic treatment still met the requirements of second class barley malt in Chinese light industry standard QB/T 1686-2008. Our work provides a new idea for the control of fungal contamination in barley malt.


Assuntos
Fusarium , Hordeum , Micotoxinas , Tricotecenos , Micotoxinas/análise , Tricotecenos/análise , Microbiologia de Alimentos , Hordeum/microbiologia , Fusarium/metabolismo
13.
PLoS Pathog ; 20(1): e1011913, 2024 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-38166144

RESUMO

Mycotoxin deoxynivalenol (DON) produced by the Fusarium graminearum complex is highly toxic to animal and human health. During DON synthesis, the endoplasmic reticulum (ER) of F. graminearum is intensively reorganized, from thin reticular structure to thickened spherical and crescent structure, which was referred to as "DON toxisome". However, the underlying mechanism of how the ER is reorganized into toxisome remains unknown. In this study, we discovered that overproduction of ER-localized DON biosynthetic enzyme Tri4 or Tri1, or intrinsic ER-resident membrane proteins FgHmr1 and FgCnx was sufficient to induce toxisome-shaped structure (TSS) formation under non-toxin-inducing conditions. Moreover, heterologous overexpression of Tri1 and Tri4 proteins in non-DON-producing fungi F. oxysporum f. sp. lycopersici and F. fujikuroi also led to TSS formation. In addition, we found that the high osmolarity glycerol (HOG), but not the unfolded protein response (UPR) signaling pathway was involved in the assembly of ER into TSS. By using toxisome as a biomarker, we screened and identified a novel chemical which exhibited high inhibitory activity against toxisome formation and DON biosynthesis, and inhibited Fusarium growth species-specifically. Taken together, this study demonstrated that the essence of ER remodeling into toxisome structure is a response to the overproduction of ER-localized DON biosynthetic enzymes, providing a novel pathway for management of mycotoxin contamination.


Assuntos
Fusarium , Micotoxinas , Tricotecenos , Humanos , Micotoxinas/metabolismo , Fusarium/metabolismo , Proteínas Fúngicas/genética , Proteínas Fúngicas/metabolismo , Retículo Endoplasmático/metabolismo
14.
Toxicon ; 239: 107534, 2024 Feb 23.
Artigo em Inglês | MEDLINE | ID: mdl-38013058

RESUMO

Beauvericin and enniatins, emerging mycotoxins produced mainly by Fusarium species, are natural contaminants of cereals and cereal products. These mycotoxins are cyclic hexadepsipeptides with ionophore properties and their toxicity mechanism is related to their ability to transport cations across the cell membrane. Beauvericin and enniatins are cytotoxic, as they decrease cell viability, promote cell cycle arrest, and increase apoptosis and the generation of reactive oxygen species in several cell lines. They also cause changes at the transcriptomic level and have immunomodulatory effects in vitro and in vivo. Toxicokinetic results are scarce, and, despite its proven toxic effects in vitro, no regulation or risk assessment has yet been performed due to a lack of in vivo data. This mini-review aims to report the information available in the literature on studies of in vitro and in vivo toxic effects with beauvericin and enniatins, which are mycotoxins of increasing interest to animal and human health.


Assuntos
Depsipeptídeos , Fusarium , Micotoxinas , Animais , Humanos , Micotoxinas/análise , Fusarium/química , Fusarium/metabolismo , Depsipeptídeos/toxicidade , Grão Comestível/química , Grão Comestível/metabolismo , Contaminação de Alimentos/análise
15.
Int J Food Microbiol ; 410: 110494, 2024 Jan 30.
Artigo em Inglês | MEDLINE | ID: mdl-38006847

RESUMO

Fusarium verticillioides is one of the important mycotoxigenic pathogens of maize since it causes severe yield losses and produces fumonisins (FBs) to threaten human and animal health. Previous studies showed that temperature and water activity (aw) are two pivotal environmental factors affecting F. verticillioides growth and FBs production during maize storage. However, the genome-wide transcriptome analysis of differentially expressed genes (DEGs) in F. verticillioides under the stress combinations of temperature and aw has not been studied in detail. In this study, DEGs of F. verticillioides and their related regulatory pathways were analyzed in response to the stress of temperature and aw combinations using RNA-Seq. The results showed that the optimal growth conditions for F. verticillioides were 0.98 aw and 25 °C, whereas the highest per-unit yield of the fumonisin B1 (FB1) was observed at 0.98 aw and 15 °C. The RNA-seq analysis showed that 9648 DEGs were affected by temperature regardless of aw levels, whereas only 218 DEGs were affected by aw regardless of temperature variations. Gene Ontology (GO) analysis revealed that a decrease in temperature at both aw levels led to a significant upregulation of genes associated with 24 biological processes, while three biological processes were downregulated. Furthermore, when aw was decreased at both temperatures, seven biological processes were significantly upregulated and four were downregulated. The Kyoto Encyclopedia of Genes and Genomes (KEGG) pathway enrichment analysis revealed that the genes, whose expression was upregulated when the temperature decreased, were predominantly associated with the proteasome pathway, whereas the genes, whose expression was downregulated when the aw decreased, were mainly linked to amino acid metabolism. For the FB1, except for the FUM15 gene, the other 15 biosynthetic-related genes were highly expressed at 0.98 aw and 15 °C. In addition, the expression pattern analysis of other biosynthetic genes involved in secondary metabolite production and regulation of fumonisins production was conducted to explore how this fungus responds to the stress combinations of temperature and aw. Overall, this study primarily examines the impact of temperature and aw on the growth of F. verticillioides and its production of FB1 using transcriptome data. The findings presented here have the potential to contribute to the development of novel strategies for managing fungal diseases and offer valuable insights for preventing fumonisin contamination in food and feed storage.


Assuntos
Fumonisinas , Fusarium , Humanos , Fumonisinas/metabolismo , Zea mays/genética , Zea mays/microbiologia , Temperatura , Água/metabolismo , Fusarium/metabolismo , Perfilação da Expressão Gênica
16.
Toxicol Lett ; 391: 55-61, 2024 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-38092155

RESUMO

This study investigates gene expression changes in laying hens exposed to trichothecene mycotoxins, known to induce oxidative stress and affect xenobiotic transformation and antioxidants. A 3-day feeding trial tested low and high doses of T-2/HT-2 toxin, DON/3-AcDON/15-AcDON, and FB1 in hen feed. Results showed increased expression of AHR, AHRR, HSP90, and CYP1A2 genes on days 2 and 3, suggesting a response to mycotoxin exposure. High doses down-regulated CYP1A2, AHR, and AHRR on day 1. KEAP1 expression decreased on day 1 but increased dose-dependently on days 2 and 3. NRF2 was up-regulated by low and down-regulated by high doses on day 1, then increased on days 2 and 3. Antioxidant-related genes (GPX3, GPX4, GSS, GSR) showed dose-dependent responses. Low doses up-regulated GPX3 and GPX4 throughout, while high doses up-regulated GPX3 on days 2 and 3 and GPX4 on day 3. GSS was up-regulated on day 3. Results indicate that toxic metabolites formed by phase I biotransformation rapidly induce ROS formation at low doses through the AHR/Hsp90/CYP1A2 pathway at the gene expression level, but at high levels, ROS-induced oxidative stress manifests later. Study showed simultaneous activation of redox-sensitive pathways: aryl hydrocarbon receptor (Ahr) and nuclear factor erythroid-derived 2-like 2 (Nrf2) by multi-mycotoxin exposure.


Assuntos
Fusarium , Micotoxinas , Toxina T-2 , Feminino , Animais , Micotoxinas/toxicidade , Fusarium/metabolismo , Proteína 1 Associada a ECH Semelhante a Kelch , Fator 2 Relacionado a NF-E2/genética , Fator 2 Relacionado a NF-E2/metabolismo , Galinhas , Citocromo P-450 CYP1A2/metabolismo , Espécies Reativas de Oxigênio/metabolismo , Receptores de Hidrocarboneto Arílico/genética , Receptores de Hidrocarboneto Arílico/metabolismo , Antioxidantes/metabolismo , Fígado/metabolismo , Toxina T-2/toxicidade , Toxina T-2/metabolismo
17.
J Antibiot (Tokyo) ; 77(3): 193-198, 2024 03.
Artigo em Inglês | MEDLINE | ID: mdl-38148392

RESUMO

Intestinal fungi, which are important parts of the gut microbiota, have the ability to produce specialized metabolites that significantly contribute to maintaining the balance of the gut microbiota and promoting the health of the host organism. In the present study, two new glycosides, including fusintespyrone A (1) and cerevisterolside A (4), as well as ten known compounds were isolated from the intestinal fungus Fusarium sp. LE06. The structures of the new compounds were elucidated by a combination of spectroscopic methods, such as mass spectrometry (MS) and nuclear magnetic resonance (NMR), along with chemical reactions and calculations of NMR and ECD spectra. Compounds 1-3 showed significant growth inhibition against Aspergillus fumigatus, Fusarium oxysporum, and Verticillium dahliae with MIC values in the range of 1.56-6.25 µg ml-1.


Assuntos
Ascomicetos , Fusarium , Antifúngicos/química , Fusarium/metabolismo , Ascomicetos/metabolismo , Aspergillus fumigatus/metabolismo , Espectroscopia de Ressonância Magnética
18.
Appl Environ Microbiol ; 89(12): e0063023, 2023 12 21.
Artigo em Inglês | MEDLINE | ID: mdl-38054732

RESUMO

IMPORTANCE: Fusaric acid (FA) is an important virulence factor produced by several Fusarium species. These fungi are responsible for wilt and rot diseases in a diverse range of crops. FA is toxic for animals, humans and soil-borne microorganisms. This mycotoxin reduces the survival and competition abilities of bacterial species able to antagonize Fusarium spp., due to its negative effects on viability and the production of antibiotics effective against these fungi. FA biodegradation is not a common characteristic among bacteria, and the determinants of FA catabolism have not been identified so far in any microorganism. In this study, we identified genes, enzymes, and metabolic pathways involved in the degradation of FA in the soil bacterium Burkholderia ambifaria T16. Our results provide insights into the catabolism of a pyridine-derivative involved in plant pathogenesis by a rhizosphere bacterium.


Assuntos
Complexo Burkholderia cepacia , Burkholderia , Fusarium , Micotoxinas , Animais , Humanos , Micotoxinas/metabolismo , Ácido Fusárico/metabolismo , Burkholderia/metabolismo , Complexo Burkholderia cepacia/metabolismo , Fungos/metabolismo , Solo , Fusarium/metabolismo , Doenças das Plantas/microbiologia
19.
Appl Environ Microbiol ; 89(12): e0121123, 2023 12 21.
Artigo em Inglês | MEDLINE | ID: mdl-38054733

RESUMO

IMPORTANCE: Fumonisins can cause diseases in animals and humans consuming Fusarium-contaminated food or feed. The search for microbes capable of fumonisin degradation, or for enzymes that can detoxify fumonisins, currently relies primarily on chemical detection methods. Our constructed fumonisin B1-sensitive yeast strain can be used to phenotypically detect detoxification activity and should be useful in screening for novel fumonisin resistance genes and to elucidate fumonisin metabolism and resistance mechanisms in fungi and plants, and thereby, in the long term, help to mitigate the threat of fumonisins in feed and food.


Assuntos
Fumonisinas , Fusarium , Humanos , Animais , Fumonisinas/toxicidade , Fumonisinas/metabolismo , Saccharomyces cerevisiae/genética , Saccharomyces cerevisiae/metabolismo , Ração Animal , Fusarium/genética , Fusarium/metabolismo
20.
J Agric Food Chem ; 71(51): 20643-20653, 2023 Dec 27.
Artigo em Inglês | MEDLINE | ID: mdl-38108286

RESUMO

Fusarium graminearum exhibited natural resistance to a majority of succinate dehydrogenase inhibitor fungicides (SDHIs) and the molecular mechanisms responsible for the natural resistance were still unknown. Succinate dehydrogenase subunit C (SdhC) is an essential gene for maintaining succinate-ubiquinone oxidoreductase (SQR) function in fungi. In F. graminearum, a paralog of FgSdhC named as FgSdhC1 was identified. Based on RNA-Seq and qRT-PCR assay, we found that the expression level of FgSdhC1 was very low but upregulated by SDHIs treatment. Based on reverse genetics, we demonstrated that FgSdhC1 was an inessential gene in normal growth but was sufficient for maintaining SQR function and conferred natural resistance or reduced sensitivity toward SDHIs. Additionally, we found that the standard F. graminearum isolate PH-1 had high sensitivity to a majority of SDHIs. A single nucleotide variation (C to T) in the FgSdhC1 of isolate PH-1, resulting in a premature termination codon (TAA) replacing the fourth amino acid glutamine (Q), led to the failure of FgSdhC1 to perform functions of conferring nature resistance. These results established that a dispensable paralogous gene determined SDHIs resistance in natural populations of F. graminearum.


Assuntos
Fungicidas Industriais , Fusarium , Fungicidas Industriais/farmacologia , Succinato Desidrogenase/genética , Succinato Desidrogenase/metabolismo , Farmacorresistência Fúngica/genética , Doenças das Plantas/microbiologia , Fusarium/genética , Fusarium/metabolismo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...